|
Прямая пересекает многогранную поверхность в нескольких точках, различных или совпадающих.
Если многогранник выпуклый, то существует 2 точки пересечения прямой с многогранной поверхностью, их называют точками встречи.
Построение точек встречи сводится к решению первой основной позиционной задачи. Рисунок наглядно иллюстрирует решение этой задачи.
|
|
Алгоритм построения точек пересечения прямой с многогранной поверхностью:
- Заключаем прямую a во вспомогательную плоскость s.
- Плоскость s пересекает многогранник по ломаной KLP.
- Ломаная KLP пересекается с прямой a в точках N и M. Точки N и M – искомые точки пересечения прямой a с многогранником.
|
Выбор вспомогательной плоскости s необходимо обосновать в каждом конкретном случае, исходя из точности и простоты построений.
| Гл 1 |
Гл 2 |
Гл 3 |
Гл 4 |
Гл 5 |
Гл 6 |
Гл 7 |
Гл 8 |
Гл 9 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|