Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую.
Если прямая параллельна плоскости проекции (h | | П1), то для того чтобы определить расстояние от точки А до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h.
Нажмите на картинку для просмотра...
На ортогональном чертеже строим отрезок A1M1 перпендикулярно h1. Далее на прямой h1 откладываем отрезок M1M0 равный А2В2. Длину перпендикуляра АM можно найти способом прямоугольного треугольника А1M1M0: |АM| = |А1M0|.
Рассмотрим более сложный пример, когда прямая занимает общее положение. Пусть необходимо определить расстояние от точки М до прямой а общего положения.
Нажмите на картинку для просмотра...
Решение задачи проводится по следующей схеме:
Через заданную точку M проводится плоскость s перпендикулярная заданной прямой а. Плоскость задается двумя пересекающимися прямыми, фронталью (f) и горизонталью (h): s = h f.
Находится точка пересечения (K) исходной прямой а с плоскостью s.
Определяется расстояние от точки М до точки K способом прямоугольного треугольника. Длина гипотенузы прямоугольного треугольника M2K2N2 равна расстоянию от точки M до прямой а: |MK| = M2N2.
Задача на определение расстояния между параллельными прямыми решается аналогично предыдущей. На одной прямой берется точка, из нее опускается перпендикуляр на другую прямую. Длина перпендикуляра равна расстоянию между параллельными прямыми.