Назад
Начертательная геометрия
Главное меню Помощь Начало Тесты
Вперед
  2.4  Задание прямой в ортогональных проекциях
  2.4.1  Ортогональные проекции отрезка прямой общего положения


 До сих пор мы рассматривали ортогональные проекции точки на комплексном чертеже. Теперь рассмотрим комплексный чертёж линии. Комплексный чертёж линии представляет собой совокупность проекций точек этой линии на две или три плоскости проекций. На комплексном чертеже необходимо установить связь между проекциями точек. В этом случае линия будет определена однозначно.

 По расположению относительно плоскостей проекций прямые могут быть общего и частного положений.

 Прямой общего положения называется прямая, не параллельная ни одной из плоскостей проекций.

 Рассмотрим схему построения ортогонального чертежа прямой линии. Так как две точки однозначно определяют положение прямой в пространстве, то нам достаточно задать на комплексном чертеже проекции двух точек, принадлежащих прямой и попарно соединить их первые, вторые и третьи проекции.


Нажмите на картинку для просмотра...

 Например, возьмём прямую m общего положения, заданную двумя точками А и В. Построим ортогональные проекции отрезка АВ на плоскости П1, П2, П3. Соединив ортогональные проекции точек А и В на каждой плоскости, мы получим ортогональную проекцию отрезка АВ на все три проецирующие плоскости.




Нажмите на картинку для просмотра...

 Теперь перейдём к ортогональному чертежу. По аналогии с тем как мы строили ортогональный чертёж точки, построим ортогональный чертёж отрезка АВ общего положения на все три плоскости проекций. Для этого сначала построим проекции точки А: А1, А2 и А3, затем проекции точки В: В1, В2 и В3. Соединим одноимённые проекции точек А и В. Мы получили комплексный чертёж отрезка прямой АВ общего положения на все три плоскости проекций.

 Отметим, что расстояния от точек А1 и А3 до соответствующих осей проекций равны, так же как равны расстояния от точек В1 и В3 до тех же осей.



 Следы прямой общего положения

 Прямая общего положения пересекает плоскости проекций в 2-х точках – эти точки называют следами прямой.


Нажмите на картинку для просмотра...

 Точка М - точка пересечения прямой m с плоскостью П1, т. е. точка М -горизонтальный след прямой m. Точки М1 и М2 - ортогональные проекции горизонтального следа прямой m.

 Точка N - точка пересечения прямой m с плоскостью П2, т. е. точка N - фронтальный след прямой m. Точки N1 и N2 - ортогональные проекции фронтального следа прямой m.





Нажмите на картинку для просмотра...

 На ортогональном чертеже отметим точку пересечения прямой m2 с осью проекций, это точка М2 - вторая проекция горизонтального следа прямой m. Опустим из точки М2 линию связи. При пересечении линии связи и прямой m1 получится точка М1 - первая проекция горизонтального следа прямой m. Аналогично, имея первую проекцию N1 - фронтального следа прямой m, можно построить вторую проекцию N2 - фронтального следа прямой m.

 Прямую общего положения можно задать следами. Каждый след задается двумя координатами (параметрами), следовательно прямая в пространстве определена 4 параметрами.

 В общем случае длина отрезка АВ не проецируется в истинную величину и ее нельзя измерить на чертеже непосредственно. Задача измерения отрезка прямой общего положения по его проекции будет рассмотрена ниже.



Гл 1 Гл 2 Гл 3 Гл 4 Гл 5 Гл 6 Гл 7 Гл 8 Гл 9
Глава 1. Предмет начертательной геометрии. Метод проекций Краткая историческая справка Основные понятия Основы метода проецирования Центральное проецирование Параллельное проецирование Ортогональное проецирование Глава 2. Схема построения ортогонального чертежа. Ортогональный чертеж точки, прямой и плоскости Прямоугольная система координат Построение ортогонального чертежа Двухпроекционный ортогональный чертёж точки Трехпроекционный ортогональный чертёж точки Ортогональные проекции точки общего положения Ортогональные проекции точки частного положения Определение видимости конкурирующих точек Чертеж без осей проекций Здесь Вы находитесь в данный момент Ортогональные проекции отрезка прямой частного положения Взаимное расположение двух прямых на ортогональном чертеже Ортогональный чертеж плоскости общего положения Ортогональный чертеж плоскости частного положения Особые линии плоскости Глава 3. Позиционные задачи Точка на отрезке прямой. Деление отрезка в заданном отношении Прямые общего положения в плоскости Прямая параллельная плоскости, параллельные плоскости Пересечение прямой общего положения с проецирующей плоскостью Пересечение проецирующей прямой с плоскостью общего положения Пересечение прямой общего положения с плоскостью общего положения Пересечение плоскостей общего и частного положения Пересечение двух плоскостей общего положения Глава 4. Метрические задачи Прямоугольная проекция прямого угла Перпендикулярность прямых Перпендикулярность прямой и плоскости Определение длины отрезка по его проекциям Расстояние от точки до прямой Расстояние от точки до плоскости Глава 5. Многогранники Изображение многогранников на ортогональном чертеже Пересечение многогранника плоскостью Построение сечений многогранников проецирующими плоскостями Построение сечения многогранника плоскостью общего положения Пересечение прямой с многогранной поверхностью Пересечение прямой с призмой Пересечение прямой с пирамидой Глава 6. Способы преобразования ортогонального чертежа Способ введения новых плоскостей проекций (замена плоскостей проекций) Определение длины отрезка и угла его наклона к плоскости проекций Преобразование прямой общего положения в проецирующую прямую Преобразование плоскости общего положения в проецирующую Преобразование плоскости общего положения в плоскость уровня Способ плоско-параллельного перемещения Преобразование прямой общего положения в прямую уровня Преобразование прямой общего положения во фронтально проецирующую Построение центра окружности, описанной около треугольника Способ вращения вокруг проецирующей прямой Преобразование плоскости общего положения в плоскость уровня Способ вращения вокруг линии уровня Преобразование плоскости общего положения в плоскость уровня Определение истинной величены сечения пирамиды способом совмещения Глава 7. Кривые линии Кривые линии. Основные понятия Изображение кривой на ортогональном чертеже Пространственные кривые и свойства их проекций Изображение окружности на ортогональном чертеже Глава 8. Кривые поверхности Кривые поверхности. Основные понятия и определения Образование поверхностей. Кинематические поверхности. Определитель поверхности Способы задания поверхностей Линии и точки поверхности Очертание поверхности Глава 9. Классификация поверхностей Систематизация поверхностей Линейчатые поверхности Поверхность с ребром возврата Коническая поверхность Цилиндрическая поверхность Плоскость Линейчатая поверхность с плоскостью параллелизма (поверхности Каталана) Винтовые поверхности Поверхности вращения общего вида. Образование и задание на чертеже Частные случаи поверхности вращения. Линейчатые поверхности вращения Торовые поверхности Поверхности вращения 2-го порядка Поверхности с криволинейной образующей Поверхности параллельного переноса

Назад
Возврат к началу страницы
Главное меню Помощь Начало Тесты
Вперед