Назад
Начертательная геометрия
Главное меню Помощь Начало Тесты
Вперед
  2.2.2  Трехпроекционный ортогональный чертёж точки


 На практике при изображении сложных оригиналов, приходится увеличивать число плоскостей. Дополним систему плоскостей П1П2 плоскостью П3 совмещенной с ОYZ.


Нажмите на картинку для просмотра...

 Построим проекцию точки А на эту плоскость, опустив из точки А перпендикуляр на П3. A3 - третья или профильная проекция точки А. Повернем плоскость П3 вокруг оси OZ до совмещения с плоскостью П2. В итоге плоскости П1, П2 и П3 совместились в одну плоскость.



 На чертеже линии связи А2 А1 и А2 А3 к соответствующим осям: А2 А1 П2 / П1, а А2 А3 П2 / П3. Мы получили трёхпроекционный ортогональный чертёж точки А.

Расстояние от точки А1 и точки А3 до соответствующих осей проекций равны между собой и равны расстоянию от точки А до плоскости П2.

 По ортогональному чертежу можно судить о расстоянии - r от точки А до плоскостей П1, П2 и П3:

 - до П1: r = А2 А12= z (аппликате точки А)
 - до П2: r = А1 А123 А23= y (ординате точки А)
 - до П3: r = А2 А23= x (абсциссе точки А)

 Взаимосвязь между проекциями оригинала на комплексном чертеже заключается в следующем:

  • Две проекции точки располагаются на одной линии связи.
  • Линии связи между собой параллельны.
  • Две проекции точки определяют положение её третей проекции.

 Итак, мы рассмотрели возможность решения обратной задачи начертательной геометрии, т. е. восстановление по ортогональному чертежу формы, размеров оригинала, взаимного расположения его элементов и других геометрических параметров.

Гл 1 Гл 2 Гл 3 Гл 4 Гл 5 Гл 6 Гл 7 Гл 8 Гл 9
Глава 1. Предмет начертательной геометрии. Метод проекций Краткая историческая справка Основные понятия Основы метода проецирования Центральное проецирование Параллельное проецирование Ортогональное проецирование Глава 2. Схема построения ортогонального чертежа. Ортогональный чертеж точки, прямой и плоскости Прямоугольная система координат Построение ортогонального чертежа Двухпроекционный ортогональный чертёж точки Здесь Вы находитесь в данный момент Ортогональные проекции точки общего положения Ортогональные проекции точки частного положения Определение видимости конкурирующих точек Чертеж без осей проекций Ортогональные проекции отрезка прямой общего положения Ортогональные проекции отрезка прямой частного положения Взаимное расположение двух прямых на ортогональном чертеже Ортогональный чертеж плоскости общего положения Ортогональный чертеж плоскости частного положения Особые линии плоскости Глава 3. Позиционные задачи Точка на отрезке прямой. Деление отрезка в заданном отношении Прямые общего положения в плоскости Прямая параллельная плоскости, параллельные плоскости Пересечение прямой общего положения с проецирующей плоскостью Пересечение проецирующей прямой с плоскостью общего положения Пересечение прямой общего положения с плоскостью общего положения Пересечение плоскостей общего и частного положения Пересечение двух плоскостей общего положения Глава 4. Метрические задачи Прямоугольная проекция прямого угла Перпендикулярность прямых Перпендикулярность прямой и плоскости Определение длины отрезка по его проекциям Расстояние от точки до прямой Расстояние от точки до плоскости Глава 5. Многогранники Изображение многогранников на ортогональном чертеже Пересечение многогранника плоскостью Построение сечений многогранников проецирующими плоскостями Построение сечения многогранника плоскостью общего положения Пересечение прямой с многогранной поверхностью Пересечение прямой с призмой Пересечение прямой с пирамидой Глава 6. Способы преобразования ортогонального чертежа Способ введения новых плоскостей проекций (замена плоскостей проекций) Определение длины отрезка и угла его наклона к плоскости проекций Преобразование прямой общего положения в проецирующую прямую Преобразование плоскости общего положения в проецирующую Преобразование плоскости общего положения в плоскость уровня Способ плоско-параллельного перемещения Преобразование прямой общего положения в прямую уровня Преобразование прямой общего положения во фронтально проецирующую Построение центра окружности, описанной около треугольника Способ вращения вокруг проецирующей прямой Преобразование плоскости общего положения в плоскость уровня Способ вращения вокруг линии уровня Преобразование плоскости общего положения в плоскость уровня Определение истинной величены сечения пирамиды способом совмещения Глава 7. Кривые линии Кривые линии. Основные понятия Изображение кривой на ортогональном чертеже Пространственные кривые и свойства их проекций Изображение окружности на ортогональном чертеже Глава 8. Кривые поверхности Кривые поверхности. Основные понятия и определения Образование поверхностей. Кинематические поверхности. Определитель поверхности Способы задания поверхностей Линии и точки поверхности Очертание поверхности Глава 9. Классификация поверхностей Систематизация поверхностей Линейчатые поверхности Поверхность с ребром возврата Коническая поверхность Цилиндрическая поверхность Плоскость Линейчатая поверхность с плоскостью параллелизма (поверхности Каталана) Винтовые поверхности Поверхности вращения общего вида. Образование и задание на чертеже Частные случаи поверхности вращения. Линейчатые поверхности вращения Торовые поверхности Поверхности вращения 2-го порядка Поверхности с криволинейной образующей Поверхности параллельного переноса

Назад
Возврат к началу страницы
Главное меню Помощь Начало Тесты
Вперед