 |
Общим методом построения разверток криволинейных поверхностей является метод триангуляции, при котором поверхность аппроксимируется (заменяется) вписанной или описанной многогранной поверхностью, грани которой – треугольники, а затем строится развертка многогранной поверхности, которая будет приближенной или условной разверткой криволинейной поверхности.
Этот метод применяется при построении развертки конической поверхности, которая аппроксимируется вписанной (реже описанной) пирамидальной поверхностью. Построение развертки конуса сводится к построению развертки пирамиды, у которой боковые грани являются треугольниками.
Рассмотрим построение пирамиды SABC (рис. 2).
Для построения развертки пирамиды необходимо знать длину каждого ребра. Основание пирамиды лежит в плоскости, параллельной плоскости П1, а потому на эту плоскость отрезки АВ, АС и СB проецируются в истинную величину, и их длину можно измерить на горизонтальном поле проекций. Длины ребер AS, BS, CS находим вращением их вокруг горизонтальной оси i до фронтального положения, а потому S1A1, S1B1, S1C1 параллельны оси Х, фронтальные проекции S2A2, S2B2, S2C2 имеют длину, равную длине ребер пирамиды.
После того как найдены длины всех ребер, приступаем к построению развертки. Для этого на свободном чертеже построим треугольник А0В0S0, равный грани АВS, причем |А0S0| = |A2B2|, |S0B0| = |S2B2|, где |A0B0| = |S2C2|, |A0C0| = |A1C1|, |B0C0| = |B1C1|. К боковой развертке примыкает основание А0В0С0.
При построении развертки поверхности иногда приходится наносить линию, расположенную на ней, например линию пересечения с другой поверхностью. На рис. 2 показано построение линии а (1 2 3) (11 21 31, 12 22 32).
| Гл 1 |
Гл 2 |
Гл 3 |
Гл 4 |
Гл 5 |
Гл 6 |
Гл 7 |
Гл 8 |
Гл 9 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
 |