 |
Теорема Монжа.
Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия пересечения распадается на две плоские кривые второго порядка.
Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания. В соответствии с этой теоремой цилиндры одинакового диаметра имеют общую касательную сферу, пересекаются по двум эллипсам m(m2) и n(n2) рис. 15(а, в).
Линия пересечения конуса и цилиндра, описанных около сферы (рис. 15 б), распадается на два эллипса m(m2) и n(n2).
| Гл 1 |
Гл 2 |
Гл 3 |
Гл 4 |
Гл 5 |
Гл 6 |
Гл 7 |
Гл 8 |
Гл 9 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
 |