Назад
Начертательная геометрия
Главное меню Помощь Начало Тесты
Вперед
  12.1  Прямые и плоскость, касательная к поверхности.

 

Касательной к поверхности в некоторой ее точке называют прямую, касательную к какой-либо кривой на поверхности, проходящей через данную точку.

Очевидно, в данной точке М поверхности Θ можно провести бесчисленное множество касательных прямых ti. Множество касательных ti, проведенных к поверхности в некоторой ее точке М, принадлежит плоскости S, если точка М является регулярной точкой поверхности. Если точка М будет особой точкой поверхности Θ, то множество касательных ti образует поверхность конуса в этой точке. Касательной плоскостью к поверхности ее в регулярной точке называют плоскость, содержащую множество касательных, проведенных к всевозможным кривым поверхности, проходящим через эту точку.

Касательная плоскость S к поверхности Θ в точке М однозначно определяется двумя касательными t11 и t2, проведённым к кривым а и b поверхности Θ, проходящими через точку М (рис. 1).

С понятием касательной плоскости тесно связано понятие  нормали к поверхности.
Нормалью h поверхности Θ в некоторой ее точке М называют  прямую, проходящую через эту точку и перпендикулярную касательной плоскости, построенной в этой точке. Из этого определения непосредственно следует способ построения нормали. В особой точке поверхности положения нормали неопределенно лежит.
Касательная плоскость может пересекать поверхность по действительной или мнимой кривой. Например, на рис. 2 показана касательная плоскость S в точке М, принадлежащая горлу однополостного гиперболоида. Она пересекает поверхность по двум прямым l1 и l2.
Графические алгоритмы построения касательных плоскостей и нормали.
Для построения касательной плоскости и нормали в заданной точке М необходимо:

-         на поверхности взять две линии, проходящие через точку М;

-         провести касательные в точке М к выбранным линиям; две пересекающиеся касательные определяют касательную плоскость;

-         провести перпендикуляр к касательной плоскости в точке М.

Если исходная поверхность коническая или цилиндрическая, то касательная плоскость касается поверхности в точках всей образующей, поэтому достаточно взять одну кривую на поверхности.
При построении проекций касательных на чертеже рекомендуется выбирать на поверхности простые линии частного положения, чтобы построение проекций линий и касательных к ним, не вызывало затруднений.


Гл 1 Гл 2 Гл 3 Гл 4 Гл 5 Гл 6 Гл 7 Гл 8 Гл 9
Глава 1. Предмет начертательной геометрии. Метод проекций Краткая историческая справка Основные понятия Основы метода проецирования Центральное проецирование Параллельное проецирование Ортогональное проецирование Глава 2. Схема построения ортогонального чертежа. Ортогональный чертеж точки, прямой и плоскости Прямоугольная система координат Построение ортогонального чертежа Двухпроекционный ортогональный чертёж точки Трехпроекционный ортогональный чертёж точки Ортогональные проекции точки общего положения Ортогональные проекции точки частного положения Определение видимости конкурирующих точек Чертеж без осей проекций Ортогональные проекции отрезка прямой общего положения Ортогональные проекции отрезка прямой частного положения Взаимное расположение двух прямых на ортогональном чертеже Ортогональный чертеж плоскости общего положения Ортогональный чертеж плоскости частного положения Особые линии плоскости Глава 3. Позиционные задачи Точка на отрезке прямой. Деление отрезка в заданном отношении Прямые общего положения в плоскости Прямая параллельная плоскости, параллельные плоскости Пересечение прямой общего положения с проецирующей плоскостью Пересечение проецирующей прямой с плоскостью общего положения Пересечение прямой общего положения с плоскостью общего положения Пересечение плоскостей общего и частного положения Пересечение двух плоскостей общего положения Глава 4. Метрические задачи Прямоугольная проекция прямого угла Перпендикулярность прямых Перпендикулярность прямой и плоскости Определение длины отрезка по его проекциям Расстояние от точки до прямой Расстояние от точки до плоскости Глава 5. Многогранники Изображение многогранников на ортогональном чертеже Пересечение многогранника плоскостью Построение сечений многогранников проецирующими плоскостями Построение сечения многогранника плоскостью общего положения Пересечение прямой с многогранной поверхностью Пересечение прямой с призмой Пересечение прямой с пирамидой Глава 6. Способы преобразования ортогонального чертежа Способ введения новых плоскостей проекций (замена плоскостей проекций) Определение длины отрезка и угла его наклона к плоскости проекций Преобразование прямой общего положения в проецирующую прямую Преобразование плоскости общего положения в проецирующую Преобразование плоскости общего положения в плоскость уровня Способ плоско-параллельного перемещения Преобразование прямой общего положения в прямую уровня Преобразование прямой общего положения во фронтально проецирующую Построение центра окружности, описанной около треугольника Способ вращения вокруг проецирующей прямой Преобразование плоскости общего положения в плоскость уровня Способ вращения вокруг линии уровня Преобразование плоскости общего положения в плоскость уровня Определение истинной величены сечения пирамиды способом совмещения Глава 7. Кривые линии Кривые линии. Основные понятия Изображение кривой на ортогональном чертеже Пространственные кривые и свойства их проекций Изображение окружности на ортогональном чертеже Глава 8. Кривые поверхности Кривые поверхности. Основные понятия и определения Образование поверхностей. Кинематические поверхности. Определитель поверхности Способы задания поверхностей Линии и точки поверхности Очертание поверхности Глава 9. Классификация поверхностей Здесь Вы находитесь в данный момент Линейчатые поверхности Поверхность с ребром возврата Коническая поверхность Цилиндрическая поверхность Плоскость Линейчатая поверхность с плоскостью параллелизма (поверхности Каталана) Винтовые поверхности Поверхности вращения общего вида. Образование и задание на чертеже Частные случаи поверхности вращения. Линейчатые поверхности вращения Торовые поверхности Поверхности вращения 2-го порядка Поверхности с криволинейной образующей Поверхности параллельного переноса

Назад
Возврат к началу страницы
Главное меню Помощь Начало Тесты
Вперед